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FIRST WALL MAGNETIC PROTECTION IN AN
INERTIALLY CONFINED THERMONUCLEAR REACTOR

by
Joseph J. Devaney

ABSTRACT

On the basis of three different theories, it is shown for a
typical set of reactor parameters that inertially confined micro-
explosions are either

1. Stable during early expansion; or

2. Only weakly unstable during expansion with flute amplitude
growth of but 0.005%; or

3. Only weakly unstable during expansion with negligible flute
amplitude growth.

Simple formulas are given for skin depths in the plasma (~ 2.4 cm
here) and in the first wall (~ 0.3 cm for 5000C graphite). Plasma
behavior is found to be collective and ambipolar. Formulas are
given for calculating the strength of the required protecting ini-
tial magnetic field. For a microexplosion putting 16-MJ kinetic
energy into 0.25 g of lead debris, we find 3.2 kG to be adequate
protection in a reactor chamber of 200-cm radius with a graphite (or
other conducting) wall.

I. INTRODUCTION

This report gives the reasoning and calculations supporting use of simple
solenoidal magnetic fields to protect the first or inner cavity wall of an in-
ertially confined fusion reactor against the charged particle debris of a ther-
monuclear microexplosion. Briefly, the reason that simple field geometries are
adequate for microexplosions but not for magnetically confined plasmas lies in
the shorter plasma time and space of confinement needed. In fact for inertial
confinement the magnetic field need not even confine the exploding plasma de-
bris, but need only decelerate or deflect it sufficiently to prevent wall dam-
age. However, our compendious calculations here indicate actual cylindrical
confinement, thus protecting the first wall for times well beyond a plasma re-
coil back toward the axis of the cylindrical reaction cavity.



Our geometry is the simplest, a microexplosion occuring on the axis of a
long solenoid, see Fig. 1. A long solenoid is needless in practice, however,
for even a single coil may suffice depending on the physics and the geometry of
the reactor. Indeed such a coil is both more economical and has more stable
convex curved magnetic lines of force axially than the Tinear Tines of a long
solenoid. The first wall is taken to be a good conductor, a subject we return
to below. If one imagines the poles of the spherically expanding debris to Tie
on the axis of the cylinder, then the equator of the debris will hit the first
wall first (as seen touching the first wall in Fig. 1). The equatorial sector
of the debris, because travelling normal to the wall and having the shortest
(hence most dense at collision) path to the wall, presents the most severe test
of wall protection. In our calculations below we examine the equatorial impacts
as a worst case.

As in all magnetic confinement, the critical questions are:

1. Is there instability?

and

2. Do the instabilities that may develop permit energetic plasma penetration
to the wall, in this case before general plasma rebound from the compressed
magnetic field?

The answers to these questions are, for two numerical cases of interest in laser

driven fusion:

1. Negative in part. There is actual stability early in the microexplosion.

2. Negative.
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Fig. 1. Magnetically protected cavity wall.




We support these conclusions with three overall calculations for average, but
worse case average, microexplosion parameters.

Full, detailed calculations, which unfortunately are extremely lengthy,
should certainly be undertaken anticipating any hardware designs. However, the
indications available to us presently are that the calculations below are in
fact an upper bound to the rates of growth of instabilities.

The three calculations are:

1. Differential Larmor radius stabilization of otherwise weakly unstable con-
fined plasmas.

2. Flute instability growthz’3 during debris plasma expansion by a method
suggested by W. Riesenfeld.4

3. Flute instability criteria for conducting plasma shell expanding into an
ambient uniform vacuum magnetic field by a method suggested by Poukey.5

In addition we present formulas for determining the required initial magnetic

field and for determining the wall and plasma skin depths as well as a demon-

stration of the ambipolar nature of the plasma expansion.

II. REFERENCE MICROEXPLOSION AND DEBRIS PARAMETERS

In order to furnish numerical results for a typical laser-fusion pellet,
(for a pure DT pellet see Ref. 6), we adopt the following debris parameters.

Assume that the pellet material consists entirely of lead, weighing 0.253
g, with an asymtotic kinetic energy of E0 = 16.17 MJ, a particle energy of
137.1 keV, a constant charge state 2, and a velocity of 3.57 x 107 cm/s. The
number of atoms is 7.36 x ]020. Initially the lead is at a density Po =
0.0535 g/cm3 in a shell of outer radius Ro = 1.116 cm. We postulate that the

debris expands as a shell with density variation inversely proportional to area
thus:

p = OO(RO/R)Z ’ (])

where o is the density at the inital outer radius Ro’ The first wall cy-
lindrical radius is Rc' This brutal simplification of an otherwise fascinat-
ingly complicated problem is necessary to complete these calculations in a

reasonable time. The simplifications are, however, upper bound, or "worst



case," approximations. The confinement of the plasma into a spherical shell and
its r—z dependence (rather than r—3 for instance) provides the highest

plasma pressure against the magnetic field and therefore should be worse than
the actual distributed plasma. The original charge of the lead ions (at 1 cm)
is about 42 which, with expansion and cooling, will eventually drop to near
zero. Plasma interaction with the magnetic field will cause currents to flow in
the plasma and thereby prevent expansion which in turn will heat the plasma and
delay recombination. Our calculations do not depend on the charge to any sig-
nificant degree unless the charge is very small. See the next section on skin
depths. The asymtotic kinetic energy is that kinetic energy that the plasma has

at large radii in a free expansion in vacuum, (i.e., after all radiation has
occurred).

III. DEBRIS CLOSEST APPROACH, SKIN DEPTHS

In general the closest approach of the plasma to the first wall, d, must be
greater than, or about the sum of, the skin depths in the plasma and in the con-
ducting spherical shell. There are other "leakages" (e.g., large flute insta-
bility growth) that might warrant choice of d larger than skin depths. However,
where a conductivity, o, can be defined, the skin depth & is:7

s :C(ufo)—]/z/ZN ’ (2)

where u is the magnetic permeability and f—] is the effective rise time of the
magnetic pressure pulse. For example, for copper at 300 K a 1 us rise~time
pulse has a skin depth of 0.0141 cm, but at 500°C the conducti’vity8 is re-
duced by a factor of 3.18 so that the copper skin depth is 0.0251 c¢cm. For
graphite at 273 K, the skin depth is 0.317 cm (conductivity, 1.25 x 103
mho/cm)and at 500°C the depth is then 0.323 cm (conductivity, 1.205 x 10
mho/cm).8

3

Plasma conductivity is about7

o = [2m/(Z + 1)eZ ann J(2kT/mm)3/2 (3)



where m is the electron mass, e the electron charge, Ze the effective charge
of the debris, T is the electron temperature,and k is Boltzman's constant.

For (3/2)kT < 13.62% ev,

A = 12an3 , (4)

and for (3/2)kT > 13.6Z2 eV

A= (Zezm/‘l—§hkT)(121ng) , (5)

where N is the free electron density, and the Debye length, ap, is

Ap = VKT /4xNe? : (6)

As noted, the ionization, density, and temperature are higher for debris
pushing against a magnetic field than in a free expansion. As an example, we
take lead at a temperature of kT = 1 ev, doubly ionized, and of a density of
1077 g/cm3, or 5.81 x 1014 electrons/cm3.
more realistic density for skin depth calculations here than our shell calcu-
lations which would be about 1.8 x 10_6 g/cm2 at r = 190 cm and would give

rise to a skin depth of only 1.68 cm). Then Eq. (6) gives a Debye length of

(Note: we have chosen a

Ap = 3.08 x 107° em . (7)

Eq. (4) applies:

A= 642 (8)



then Eq. (3) gives

1

o =1.53 x 1013 s~ (9)

Finally, using u = My = 1, f = 0.25 MHz or a rise time of 1 us we get

§ = 2.44 . (10)

Thus for lead impinging on 500°C graphite, one should use for d the sum
of the skin depths, namely,

d=2.8cm , (11)

or, perhaps conservatively, a somewhat larger number. In our later examples
we will use 10 cm.
For larger chamber radii, R, the quantities, Bo’ T, N, and Z all de-

crease so that Ao changes little, and ¢nA varies but slightly, so that
roughly

3/2

oo TV'5/(Z + 1) . (12)

If the chamber (i.e., R) is large enough, Z << 1, and

T _3/4

§ o¢

(13)

except for interactions with the magnetic field which will delay recom-
bination. In contrast to our stability calculations, if we approximate the
expansion by a free expansion into vacuum we will get an upper bound, but

6




definitely not a least upper bound, to §. Following Zel'dovich and Razier9
for isentropic expansion of gas into vacuum with the law,

where p is pressure, p density, y the ratio of specific heats, and A a con-
stant, then the flow is self-similar with

(1 = r4IRY! (15)

°
]

o
1]

AoY(1 - 2R (16)

where 4 is radial position within the debris and Rd the surface radial
position of the fiow. The central density is given by

oo = cM/Rg , (17)

where M is the total mass and ¢ is a parametric function of y determined from
the relation

R
M=f o dVolume . (18)
0

The particle density, np, is related to the density by

n, = oA My (19)



where A0 is Avogadro's number and MA is the atomic mass of the particle.
At low density the perfect gas law applies:

p = nkT = oAKT/M, (20)

so that Egs. (15), (16), (17), and (20) yield

My ALY (1 - r5/R2)
3(y-1)
AoRd

kT =

whence Eq. (13) gives
s o ROCIA( L (21p2)304 (22)

For § << Rq and putting Ry~ rq = & we get

2,n2 =2
1 - rd/Rd = Rd . 26Rd = 26/Rd (23)

so that

§ o Rg(Y—])/7R3/7 , or Rg(Y—])/7R3/7 , (24)

which gives an exceedingly crude estimate of the variance of § with chamber
radius R based on required maximum excursion r = Rd of the debris to be such
that d << Ror R = Rd' Indeed, for r large, y approaches 5/3 (ionization is
frozen in) and so for the plasma skin depth,

s RI7 (25)



very roughly. Of course, the interaction of the magnetic field with the
plasma causes currents to flow in the plasma and also restrains the expansion
of the plasma thereby increasing the temperature, the free electron density
and the charge (T will dominate), thus by Eq. (2), (3), and (4) acting to
decrease & over the estimate (25).

IV. ELECTRIC DECELERATION OF IONS

The skin depths calculated above give the 1/e penetration of an electro-
magnetic field into a conductor. In a plasma, the electrons, being so ex-
tremely light, furnish the high-frequency response to the rapid rise time
field pulse. The gyromagnetic radius is

a = mvpc/Ze B , (26)

where vp is the velocity component perpendicular to the magnetic induction,
-6 of that for a lead
jon so that the electron gyromagnetic radius is infinitesimal by comparison to

B. For electrons, Z = 1 and the mass m is 2.65 x 10

that of lead. Thus, the B-field reverses the electrons long before ion re-
versal and the jons face a decelerating electric field as well as a turning
magnetic field. The question arises: how far beyond the electrons can the
jons travel? Let the ion density be np and the ion charge be Z, then for a
separation x in spherical symmetry we have a net electron charge acting as if
from the center, r = 0, of

G = 4nr2xan for x<«r (27)

which gives rise to the mean potential energy per ion of

E = x << r (in erg) (28)



or

2.2
Epot =4y r x an e x <<r (erg) . (29)

For lead doubly ionized at a radius of two meters and at a density of
]0_7 g/cm3 or 2.91 x 1014 Pb/cm3,

11
Epor = 4-21 + 1077 X (v) (30)

so that charge separation of even one micron leads to 42 MV restoring poten-
tial per lead ion which is far greater than the usual 100 keV or so maximum
kinetic energy of the jons. Thus, the skin depths calculated above need not
be increased by charge separation effects. Possible instabilities and other
effects will increase the skin depths. Also the calculation given by Egs.
(29) and (30) does not exclude a few ions from exceeding the skin-depth
distance, but a few ions will result in negligible wall erosion.

V. MAGNETIC FIELD REQUIRED

Determination of the magnetic field needed to protect the first wall of a
laser fusion reactor from microexplosion debris is not trivial because the
debris comes out with varying masses, charge states, radiation rates, veloc-
ities, pressures, shock structures, and temperatures, all but the first of
which vary with time, space, relative position, and chamber background gas and
its charge state, mass, velocity, temperature, and density. However, one
simple, general,and practical calculational approach exists.? That approach
bypasses much of the usual difficulties by calculating only the equatorial
part of the pellet-field interaction - the limiting part for first wall
protection - and by performing the calculation via momentum conservation,
which bypasses the jonization states, energy states, and temperature of both
debris and residual gas. In this method one requires as input either an esti-
mate of the asymptotic kinetic energy, or of the momentum, or of the velocity
of the debris. That is, one must run an explosion code or calculation Tong
enough to allow radiation to become negligible or sufficiently known so that
10



it may be compensated for. The principles of this calculation follow. We
ignore instabilities for the moment.

We construct a perfectly conducting long cylinder of radius RC (see Sec
IIT for nonperfection), containing an initial magnetic induction, Bo’ uni-
formly across the interior and parallel to the axis of the cylinder. The
debris plasma is taken at first to be perfectly conducting and of outer radi-
us, R, the equatorial part of which compresses the magnetic induction, B, be-
tween the debris and the wall according to

B =B,/ P —(R/RC)Zl . (31)

We now bypass the sphere-cylinder geometrical problem by taking the magnetic
pressure over the whole debris sphere to be equal to that at the equator,

Pm = 82/8n . (Gaussian units) (32)

with B given by Eq. (31) over the whole debris surface, a worst case.

Let the debris have an initijal outward net momentum, Pos which would be
the asymptotic momentum in the absence of magnetic or wall interactions. Note
that the presence or absence of chamber gas will not affect the total chamber
momentum Pos only the magnetic field or the wall can do work on the debris
and so change the total momentum. The momentum change, ap, brought about by a
force F in AR is given by,

Combining Eqs. (31) and (32) and using the area, 4nR2, F is:

2
F = PA = R28§/2 1- RIRDP| . (34)

11



As the debris expands it sweeps up chamber gas, if any, and

3
ma=m * Pgas (4n/3)R (35)

gives the mass increase. This formula approximates the debris to background
gas interaction to be short range which is not always correct because high-
energy, tenuous debris will penetrate considerably into the gas. Multiplying
both sides of Eq. (33) by p = mv, using v = dr/dt, and substituting (34) and
(35) gives,

pAp = — FmaR (36)
or

2
pap = ~(85R%/2) [RZI(RE - R%) Hmo + (41rpgaS/3)R3 R (37)

Integrating from momentum p at R = 0 to momentum O at R = R gives,

R.+R
2 2,4 R 1 c
2p = B™R {m[ - n J
ocC 0 2 2 2R RO -R
(Rc - R ) c c

R 2
| } . (39)
RC

If neither pgas or B0 is too large, then R approaches RC and for most
designs that is the optimum. Consequently,

d = RC - R satisfies d <« Rc and
RS _ RZ _ _ 42 ~
c = 2dRC de = 2dRc

Thus,

12



2

_ nl
2p° = B0

R {mo [g1/2d) - (;IZRC) zn|2Rc/d|]
+(4ﬂpgas/3)[ (R /2d) *+ 2R ¢n 2d/R, |]} d. << R . (39)

For negligible gas density, Pgas? we can drop the last terms to get

4p% ~ m B2RY [(1/d) ~ (1/R)en (2R_[d) d <« R_ (40)

no gas.

0

Thus, first determining an allowable distance, d, of debris approach to the
wall from skin depths (see above, Sect III) then having a given total momentum
Po and initial mass m, in an evacuated chamber of radius Rc, the re-

quired magnetic induction is,

2 - (an2d/m RS -1
B, = (4p,d/mR) |R. - d ¢n(2R./d) d << R, (41)
no gas.

Let us introduce a numerical example, suppose our debris asymtotic
kinetic energy is 16.17 MJ = 1.617 x 10'* ergs, mass m_ = 0.253 g, the
radius RC = 200 cm and we take d = 10 cm. In terms of the kinetic energy,
Ek, Eq. (41) can then be rewritten

2 3 -1
B, ~ (8E,d/R?) [R¢ - d n(R/d) d << R, (42)

no gas.

Substitution gives the magnetic field, Bo = 3.15 kG, required to stop the
debris at 10 cm from the wall. Because d << RC and the logarithm is so much
weaker than a linear term, BO roughly scales according to

13



~2
B0 = 2 2Ekd R . d << Rc (43)

no gas.

The maximum field for d = R_ - R = 10 cm is then per Eq. (31), B = 32.3 kG.

VI. COLLECTIVE PLASMA BEHAVIOR

A whole plasma behaves collectively if its minimum dimension exceeds the
Debye 1ength,]0 Ags given by Eq. (6). The worst case test is at R = 190
cm when Z = 2, N = 2.54 x 1016/cm3, kT (assumed) = 1 eV, and as before all
the plasma is put into a shell at this radius of thickness dshe]] = 0.303
cm. Then Eq. (6) gives,

A= 4.67x 10 en ; (44)

clearly the relation

Ap << dshe]] (45)

holds, and we may take the plasma behavior to be collective.

VII. FINITE LARMOR RADIUS STABILIZATION

Because the Larmor radii of ions and electrons are finite and different,
otherwise weakly unstable confined plasmas actually are stab]e.] The dif-
ferent electron and ion Larmor radii can build up a charge separation out of
phase with particle drift separation. Because the latter drives the flute
instability, the result can be stable oscillation if:

(ka;)? > wyla; (46)

14



where k is the wave number, which we have taken as n/R, with n being the
number of flutes; a, is the jon Larmor radius (gyromagnetic), a;
= miViC/eiB; Q4 is the ion Larmor angular frequency (cyclotron
frequency), Qi = eiB/mic; and wyy is the hydrodynamic growth rate
(Taylor instability).

The growth rate for Taylor instability under gravity is:]]

2 2 7 "
wy = kg ———92 + o (47)

for two fluids of density o1 and Pas k here is the wave number of the
instability and g is the gravitational acceleration.

A magnetic field behaves as p, = 0, 50 ul = kg > k(R/IR?) (v , 2
+ 1/2 v,z) for equih‘br‘ium.]2 Because R is the radius of curvature of the

B-field, this radius is identical to our R; V,» Vv, are the velocities par-

allel and perpendicular to the surface. Because our fluid is not in equil-
ibrium, we must add R; also, we are confining our study to the equatorial
region where v, = 0, thus g » R + (§2/2R).

Using the instantaneous total energy E = 1/2 Mﬁz,

g=R+EM ; (48)
hence,

oy = VK[R + (E/mR)] . (49)

By substituting Eq. (49) into Eq. (46) our stability criterion reduces to:

2k .c = = ;
(n/R)3/2 > VR + (e/m) =V& + R¥/m) (50)
]

15



where Ei is the individual ion energy. When this inequality holds we may
expect flute stabilization

To examine the flute stabilization criterion, Eq. (50), we need the
plasma outer radius as a function of time. Again we make use of the drasti-
cally simplifying feature of applying momentum considerations over a whole
sphere, using equatorial parameters exclusively, as proposed in Section V.
The rate of change of plasma momentum in such a sphere is equal to the re-
straining force, or to the product of pressure times area, provided by the
magnetic field as given in Eqs. (31) and (32) so that,

~ dp = Fdt = PAdt = -mdv = BgRgRZdt/(RE - RZ) : (51)

This expression is integrable. With initial conditions, R =0, t =0, and v
= Vg, We obtain,

V2 - vg - (2B§R§/m) [- R+ (R_/2) en|(R_ *+ RI/(R_ - R)I] . (52)

If we expand the logarithm and recognize v = dR/dt, then

(dR/dt) =R = v, L/1 - (2B§R§/mv0)[(1/3)(R/RC)3 + (US)RR,)> + ...| . (53)

Although R can approach RC closely, using only the first term of the series
(53) is a good approximation for our purposes, we therefore write

R = (dR/dt) ~v, Y1 - R, - (54)

16



where R = Rc - d is the maximum permitted value of R. In our numerical
example, R = 190 cm. Note that any deficiency of this approximation occurs
only during the last part of its runs; for R << R it is very good indeed. We
could integrate Eq. (54) to find R = R(t), but the result is an elliptic
integral, not a very convenient result. However, use of series provides a
result of accuracy greater than the 1imit provided by Eq. (54). We expand in
a Taylor series about t = O when R(0) = 0 and R(0) = v._.

o Using Eq. (54) we
find (to sixth order in t) that

R(t) = vot |1 - (1/8) (v, t/R)3] . (55)

(Note: Eq. (54), good to fourth order in R, still limits this expression.
However the expression as used below is entirely adequate for our purposes. )
We take only the form of Eq. (55), defining G thereby and write,

R = v t(1 - 6t) (56)

G and t to be determined from the final conditions at plasma rebound,

R = V6f (1 - Gt (57)
and

] -3

R=20-= vo(1 - 4 GtV) s (58)
whence Gfs = 1/4 so that

t = 4§/3V0 (59)

17



and

6 = (3v) 1% . (60)

In our example: t = 7.09 x 10"6 sand G = 7.02 x 10]4 s—3.

For convenience in applying the test, Eq. (50), as a function of position
R, we use Eq. (54) to determine

R~ - (3v§/2ﬁ) (R/ﬁ)2 ; (61)

then substitution of Eqs. (54) and (61) into (50) gives the test,

(2nE.cle.Bv,) - [1 - (R/Rﬁ)] >V R3[(3/2R) (R/R)% + (1/2R) - (1/2R)(R/R)3]. (62)

For our parameters, the inequality holds for the worst case, n = 1, and during
R =106 cm (for which incidently our approximation, Eq. (54) is a very good
one). Thus during the early half of debris expansion we have finite Lamor
radius stabilization of flute instabilities. We now proceed to show that the
instabilities that do develop do not have sufficient time to grow appreciably
during the debris plasma expansion.

VIII. FLUTE INSTABILITY GROWTH

We may expect flute irregularities to grow exponentia]]y.z’3 Thus an
initial irregularity amplitude, Ao’ will grow according to

A=A exp(t/T) (63)

or alternatively, according to

18



dA = (A/T) dt , (64)

where

T ~ ZHR/(VA Yn) (65)

and the Alfven velocity is

vy = V8% 4x (66)

where as before, n is the number of flutes. The asymmetric explosion, n = 1,
is the worst case. The plasma mass density is p. A worst case calculation of
the instability is simply done using all parameters at the maximum radius, R
because then the plasma is at maximum pressure and the magnetic field,

= 32.3 kg, is also at maximum. The resulting time constant, 7, is 1.78 x
10-4 sec, far longer than the expansion time, calculated above, of 7.09 x
10"6 s. However it is possible to calculate the growth over the whole
expansion, and get thereby a more accurate growth number. We shall not count
on the early stability of the first section, but we will allow instability
growth over the whole expansion, and also we put n = 1, thus providing a worse
case calculation.

Using Eqs. (1), (31), (65), and (66) we find, for n = 1,

-1

(rm) =k [1- RROZ] =k [1+ ®RROZ+ RIRY* + .. (67)
=K§R/R :
J=
where
K = BO/(4n npoRo) . (68)

19



This series is absolutely and uniformly convergent for R < Rc so that Eq.
(67) can be integrated term by term and the resulting series converges to the
integral of 71, Equation (56) gives

RZ - vg(tz - 2 6t° + %t (69)
whence

t 2 2(B . atd 62769>

fRdt=vo(§—-2—6—+ : . (70)

0

Similarly for higher even powers of R.

The numerical coefficients are composed of alternating signs times the
binomial coefficients (T )in the numerator and divided by (m + 1 + 3i) in the
denominator, thus:

T
[ Rt - v Ej (=1)7 (1) m+ 1+ 3i)"lgig(m*1+31) (71)
0 1=0

Using Eq. (67):
T A .
[rmat =k T (vyr)H Z (1)
) j=o0 i=0
()2 + 1w )7 GTEETE (72)

20



For our example (RC/vo) = 5.6 x 10"6 sand t = 7.09 x 10_6 s, so that

the convergence of Eq. (72) is miserably slow.

For our example we calculate the first six terms in the j sum of Eq.
(72), i.e., to order 2j = 10, and then we take advantage of the fact that the
major contribution to the integral Eq. (71) for large m comes from R ~ R. At
that value R ~ 3v0t/4 by Eqs. (56) and (60). (For early times R ~ vot).

Thus in the integral,

t
I = g‘ (R/Rc)mdt , _ (73)

we make the substitution

R = 3¢ v t/4 (74)

where €m has the bounds

(4/3) > e >1 and em T o (7%)

and is a small correction to be determined. Note that we cannot substitute
for dt in Eq. (73) with Eq. (74). We would then involve R which goes to zero
in the limit R » R and our approximation would be totally inaccurate. However
substituting Eq. (74) for R in Eq. (73), integrating and substituting Eq. (59)
in the result yields:
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To determine the accuracy of our approximation (76) we compare KIm with the
exact terms calculated from Eq. (72) to find that e, ranges from 1.113 for m
=6 to 1.087 for m = 10 and decreases nearly linearly so that a near linear
graphical extrapolation of e to 1 (at m = 38) is satisfactory. Eq. (76) is
then calculated out to 55 terms and added to the exact first six j-terms
calculated from Eq. (72) to give

t -5
j‘ (1/7) dt = 5.15 x 10 (77)
0

in our example. Whence via Eq. (63)

A/Ao = 1.0000515 , (78)

or flute irregularities grow at most by 0.005% during the whole plasma ex-
pansions, even if there were no finite Lamor radius stabilization (See Sect.
VII). We conclude that flute instabilities do not have sufficient time to
become troublesome in a thermonucliear microexplosion of, or similar to, our
parameters.

IX. PLASMA STABILITY OF A SPHERICAL SHELL EXPANDING INTO A LARGE-SCALE

MAGNETIC FIELD

We present in this section calculations based on the findings of
Poukey5 who examined the expansion of a highly conducting spherical shell of
plasma into a constant uniform magnetic field. The calculations of this sec-
tion provide an independent evaluation of stability compared to our calcula-
tions of Sect. VIII.

Flute-instability growth of a spherical conducting plasma shell expanding
into a large vacuum against a magnetic field is given by the usual formulae
proportional to the growth term et/T where the time constant, 7, is now:

7= (2/3)(na)” /2 na >> 1 (79)
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32 2/3

T=('é3_1) (na) ~213 na > 1 , (80)
n being the number of flutes and
B° RD 8%
a = 5 = (Gaussian units) . (81)
2 Mv0 4 Eo

Here B is the (constant) magnetic induction, uniform throughout space;
Ro is the radius of the sphere at t = 0 expanding outward with an initial
velocity Vs @ total mass M, and a total initial kinetic energy Eo' As
before we take n = 1, since the asymmetry of implosion is most likely a simple
off-center (n = 1) type and also n = 1 is a worst case.

In our example E0 =16.17 MJ = 1.617 x 10]4 erg and for a worst case
calculation we take B to be the maximum, B = 32,3 kG; we then get, for the
plasma:

na = 2.24 x 100 <« 1, (82)

and the second time-constant formula, e.g. Eq. (79), yields:

r=3.1x105s . (83)

A time adequately long indeed for all gases to exit a resonably sized chamber,
not to speak of flute instability development. In fact, using the time t of
Eq. (59) for our example, 7.09 x 106, the flute amplitude growth

AIA, = et _ 1+ 2,25 x 1079 . (84)
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Thus even if the magnetic field were equal to the maximum over the whole
expansion, flute instabilities would grow only by 2 x 10_7%. This calcula-
tion should be an upper bound to the flute amplitude growth of our spherical
shell expansion beginning at 3.15 kG and ending at 32.3 kG according to the
theory of Poukey.

X. CONCLUSIONS

The calculations of this note strongly support by two (and a half) in-
dependent approaches the possibility of magnetic protection of a cavity first
wall against energetic plasma debris from microexplosions. Our examples here
involved heavy, high Z, debris (0.25 g of lead). Similar conclusions for DT
debris were reached in Ref. 6. The limitations of these calculations, in ad-
dition to those found in the formulae sources (for which see the references),
are in the use of average parameters to represent a whole gamut of physical
values. However, such averaging is entirely appropriate for a scoping calcu-
lation as intended here. Further, one is highly encouraged in the validity of
the above conclusion: first, by the fact that the averagings are in the
direction of a worst case; second, that the plasma is actually stable over a
part of its travel; and third, that the instabilities as calculated by two
approaches then develop appreciably only in times much longer than plasma
expansion times.

We also conclude that plasma and wall skin depths are generally small;
and that the protective magnetic field required, even for a small reaction
chamber, is modest.
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